The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Johansen. Profile picture.

Anders Johansen

Professor

Anders Johansen. Profile picture.

Vapor equilibrium models of accreting rocky planets demonstrate direct core growth by pebble accretion

Author

  • Marie Luise Steinmeyer
  • Anders Johansen

Summary, in English

The gaseous envelope of an accreting rocky planet becomes hot enough to sublimate silicates and other refractory minerals. For this work, we studied the effect of the resulting envelope enrichment with a heavy vapor species on the composition and temperature of the envelope. For simplification, we used the gas-phase molecule SiO to represent the sublimation of silicate material. We solved the equilibrium structure equations in 1D for planets in the mass range of 0.1 to 3 M⊙. The convective stability criterion was extended to take the stabilizing effect of the condensation of SiO clouds into account. We assumed that the envelope is both in hydrostatic equilibrium and in vapor equilibrium with the underlying magma ocean. This means that pebbles do not undergo sublimation in the envelope and therefore survive until they plunge into the magma ocean. We find that the emergence of an inner radiative region, where SiO condensation suppresses convection, increases the pressure and temperature in the inner envelope compared to pure H2/He envelopes once Mpl ≥ 0.3 M⊙. For Mpl > 0.75 M⊙, the temperature and pressure close to the surface reach the supercritical point of SiO. The amount of SiO stored in the envelope is lower than the total planet mass for low mass planets. However, for Mpl > 2.0 M⊙, all accreted pebble material must contribute to maintain the vapor equilibrium in the envelope. Therefore, the non-vapor mass of the planet ceases to increase beyond this threshold. Overall, our vapor equilibrium model of the planetary envelope allows for direct core growth by pebble accretion up to much higher masses than previously thought.

Department/s

  • Astrophysics

Publishing year

2024

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

683

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Planets and satellites: atmospheres
  • Planets and satellites: composition
  • Planets and satellites: formation
  • Planets and satellites: terrestrial planets

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361