The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Johansen. Profile picture.

Anders Johansen

Professor

Anders Johansen. Profile picture.

Fast formation of large ice pebbles after FU Orionis outbursts

Author

  • Katrin Ros
  • Anders Johansen

Summary, in English

During their formation, nascent planetary systems are subject to FU Orionis outbursts that heat a substantial part of the disc. This causes water ice in the affected part of the disc to sublimate as the ice line moves outwards to several to tens of astronomical units. In this paper, we investigate how the subsequent cooling of the disc impacts the particle sizes. We calculate the resulting particle sizes in a disc model with cooling times between 100 and 1000 yr, corresponding to typical FU Orionis outbursts. As the disc cools and the ice line retreats inwards, water vapour forms icy mantles on existing silicate particles. This process is called heterogeneous nucleation. The nucleation rate per surface area of silicate substrate strongly depends on the degree of super-saturation of the water vapour in the gas. Fast cooling results in high super-saturation levels, high nucleation rates, and limited condensation growth because the main ice budget is spent in the nucleation. Slow cooling, on the other hand, leads to rare ice nucleation and efficient growth of ice-nucleated particles by subsequent condensation. We demonstrate that close to the quiescent ice line, pebbles with a size of about centimetres to decimetres form by this process. The largest of these are expected to undergo cracking collisions. However, their Stokes numbers still reach values that are high enough to potentially trigger planetesimal formation by the streaming instability if the background turbulence is weak. Stellar outbursts may thus promote planetesimal formation around the water ice line in protoplanetary discs.

Department/s

  • Astrophysics
  • eSSENCE: The e-Science Collaboration

Publishing year

2024-06-01

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

686

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Planet-disk interactions
  • Planets and satellites: formation
  • Protoplanetary disks

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361