The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nils Ryde

Nils Ryde

Professor

Nils Ryde

The Galactic chemical evolution of phosphorus observed with IGRINS

Author

  • G. Nandakumar
  • N. Ryde
  • M. Montelius
  • B. Thorsbro
  • H. Jönsson
  • G. Mace

Summary, in English

Context. Phosphorus (P) is considered to be one of the key elements for life, making it an important element to look for in the abundance analysis of spectra of stellar systems. Yet, only a select number of spectroscopic studies exist to estimate the phosphorus abundances and investigate its trend across a range of metallicities. This is due to the lack of good phosphorus lines in the optical wavelength region and the requirement of careful manual analysis of the blended phosphorus lines in near-infrared H-band spectra obtained with individual observations and surveys such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Aims. Based on a consistent and systematic analysis of high-resolution, near-infrared Immersion GRating INfrared Spectrograph (IGRINS) spectra of 38 K giant stars in the Solar neighborhood, we present and investigate the phosphorus abundance trend in the metallicity range of -1.2 dex < [Fe/H] < 0.4 dex. Furthermore, we compare this trend with the available chemical evolution models to shed some light on the origin and evolution of phosphorus. Methods. We have observed full H- and K-band spectra at a spectral resolving power of R = 45 000 with IGRINS mounted on the Gemini South telescope, the Discovery Channel Telescope, and the Harlan J Smith Telescope at McDonald Observatory. Abundances were determined from spectral lines by modeling the synthetic spectrum that best matches the observed spectrum by χ2 minimization. For this task, we used the Spectroscopy Made Easy (SME) tool in combination with one-dimensional (1D) Model Atmospheres in a Radiative and Convective Scheme (MARCS) stellar atmosphere models. The investigated sample of stars have reliable stellar parameters estimated using optical FIber-fed Echelle Spectrograph (FIES) spectra obtained in a previous study of a set of stars called Giants in the Local Disk (GILD). In order to determine the phosphorus abundances from the 16482.92 Å phosphorus line, we needed to take special care blending the CO(v = 7-4) line. With the stellar parameters known, we thus determined the C, N, and O abundances from atomic carbon and a range of nonblended molecular lines (CO, CN, and OH) which are plentiful in the H-band region of K giant stars, assuring an appropriate modeling of the blending CO(v = 7-4) line. Results. We present the [P/Fe] versus [Fe/H] trend for K giant stars in the metallicity range of -1.2 dex < [Fe/H] < 0.4 dex and enhanced phosphorus abundances for two metal-poor s-rich stars. We find that our trend matches well with the compiled literature sample of prominently dwarf stars and the limited number of giant stars. Our trend is found to be higher by ~0.05-0.1 dex compared to the theoretical chemical evolution trend resulting from the core collapse supernova (type II) of massive stars with the phosphorus yields arbitrarily increased by a factor of 2.75. Thus the enhancement factor might need to be ~0.05-0.1 dex higher to match our trend. We also find an empirically determined primary behavior for phosphorus. Furthermore, the phosphorus abundance is found to be elevated by ~0.6-0.9 dex in the two s-enriched stars compared to the theoretical chemical evolution trend.

Department/s

  • Lund Observatory - Undergoing reorganization

Publishing year

2022-12

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

668

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Galaxy: disk
  • Galaxy: evolution
  • Infrared: stars
  • Stars: abundances
  • Stars: late-type

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361