Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photograph of Ross Church

Ross Church

Senior lecturer

Photograph of Ross Church

Implications for the origin of short gamma-ray bursts from their observed positions around their host galaxies


  • Ross Church
  • Andrew J. Levan
  • Melvyn B Davies
  • Nial Tanvir

Summary, in English

We present the observed offsets of short-duration gamma-ray bursts (SGRBs) from their putative host galaxies and compare them with the expected distributions of merging compact object binaries, given the observed properties of the hosts. We find that for all but one burst in our sample the offsets are consistent with this model. For the case of bursts with massive elliptical host galaxies, the circular velocities of the hosts' haloes exceed the natal velocities of almost all our compact object binaries. Hence, the extents of the predicted offset distributions for elliptical galaxies are determined largely by their spatial extents. In contrast, for spiral hosts, the galactic rotation velocities are smaller than typical binary natal velocities and the predicted burst offset distributions are more extended than the galaxies. One SGRB, 060502B, apparently has a large radial offset that is inconsistent with an origin in a merging galactic compact binary. Although it is plausible that the host of GRB 060502B is misidentified, our results show that the large offset is compatible with a scenario where at least a few per cent of SGRBs are created by the merger of compact binaries that form dynamically in globular clusters.


  • Lund Observatory

Publishing year







Monthly Notices of the Royal Astronomical Society





Document type

Journal article


Oxford University Press


  • Astronomy, Astrophysics and Cosmology


  • binaries: general
  • gamma-ray burst: general




  • ISSN: 1365-2966