The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dainis Dravins

Dainis Dravins

Professor emeritus

Dainis Dravins

Spatially resolved spectroscopy across stellar surfaces : II. High-resolution spectra across HD 209458 (G0 V)

Author

  • Dainis Dravins
  • Hans Günter Ludwig
  • Sven-Erik Dahlén
  • Hiva Pazira

Summary, in English

Context. High-resolution spectroscopy across spatially resolved stellar surfaces aims at obtaining spectral-line profiles that are free from rotational broadening; the gradual changes of these profiles from disk center toward the stellar limb reveal properties of atmospheric fine structure, which are possible to model with 3D hydrodynamics. Aims. Previous such studies have only been carried out for the Sun but are now extended to other stars. In this work, profiles of photospheric spectral lines are retrieved across the disk of the planet-hosting star HD 209458 (G0 V). Methods. During exoplanet transit, stellar surface portions successively become hidden and differential spectroscopy provides spectra of small surface segments temporarily hidden behind the planet. The method was elaborated in Paper I, with observable signatures quantitatively predicted from hydrodynamic simulations. Results. From observations of HD 209458 with spectral resolution λ/ Δλ ~ 80 000, photospheric Fe I line profiles are obtained at several center-To-limb positions, reaching adequately high S/N after averaging over numerous similar lines. Conclusions. Retrieved line profiles are compared to synthetic line profiles. Hydrodynamic 3D models predict, and current observations confirm, that photospheric absorption lines become broader and shallower toward the stellar limb, reflecting that horizontal velocities in stellar granulation are greater than vertical velocities. Additional types of 3D signatures will become observable with the highest resolution spectrometers at large telescopes.

Department/s

  • Lund Observatory - Has been reorganised

Publishing year

2017-09-01

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

605

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Hydrodynamics
  • Line: profiles
  • Planets and satellites: gaseous planets
  • Stars: Atmospheres
  • Stars: solar-Type
  • Techniques: spectroscopic

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361