Judith Korth
Postdoc
A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system
Author
Summary, in English
It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of $$1.16{6}_{-0.058}^{+0.061} \,R_{\oplus}$$and a mean density of $$4.8{9}_{-0.88}^{+1.03}\,{{{\rm{g}}}}\,{{{{\rm{cm}}}}}^{-3}$$. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and $$15.0{5}_{-1.11}^{+1.12}\,M_{\oplus}$$, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario.
Department/s
- Lund Observatory - Has been reorganised
Publishing year
2022
Language
English
Pages
736-750
Publication/Series
Nature Astronomy
Volume
6
Issue
6
Links
Document type
Journal article
Publisher
Nature Publishing Group
Topic
- Astronomy, Astrophysics and Cosmology
Status
Published
Project
- Consolidating CHEOPS and preparing for PLATO: Exoplanet studies in the 2020s
ISBN/ISSN/Other
- ISSN: 2397-3366