The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Thomas Bensby. Profile photo.

Thomas Bensby

Senior lecturer

Thomas Bensby. Profile photo.

An old, metal-rich accreted stellar component in the Milky Way stellar disk


  • Diane Feuillet
  • Sofia Feltzing
  • Christian Sahlholdt
  • Thomas Bensby

Summary, in English

We study the possibility that the Milky Ways' cool stellar disk includes mergers with ancient stars. Galaxies are understood to form in a hierarchical manner, where smaller (proto-)galaxies merge into larger ones. Stars in galaxies, like the Milky Way, contain in their motions and elemental abundance tracers of past events and can be used to disentangle merger remnants from stars that formed in the main galaxy. The merger history of the Milky Way is generally understood to be particularly easy to study in the stellar halo. The advent of the ESA astrometric satellite Gaia has enabled the detection of completely new structures in the halo such as the Gaia-Enceladus-Sausage. However, simulations also show that mergers may be important for the build-up of the cool stellar disks. Combining elemental abundances for ∼100 giant branch stars from APOGEE DR17 and astrometric data from Gaia we use elemental abundance ratios to find a hitherto unknown, old stellar component in the cool stellar disk in the Milky Way. We further identify a small sample of RR Lyrae variables with disk kinematics that also show the same chemical signature as the accreted red giant stars in the disk. These stars allow us to date the stars in the accreted component. We find that they are exclusively old.


  • Lund Observatory - Has been reorganised

Publishing year





Astrophysical Journal





Document type

Journal article


American Astronomical Society


  • Astronomy, Astrophysics and Cosmology




  • ISSN: 0004-637X