The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Thomas Bensby. Profile photo.

Thomas Bensby

Senior lecturer

Thomas Bensby. Profile photo.

The Gaia -ESO survey : Placing constraints on the origin of r -process elements

Author

  • M. Van Der Swaelmen
  • C. Viscasillas Vázquez
  • G. Cescutti
  • L. Magrini
  • S. Cristallo
  • D. Vescovi
  • S. Randich
  • G. Tautvaišiene
  • V. Bagdonas
  • T. Bensby
  • M. Bergemann
  • A. Bragaglia
  • A. Drazdauskas
  • F. Jiménez-Esteban
  • G. Guiglion
  • A. Korn
  • T. Masseron
  • R. Minkeviiute
  • R. Smiljanic
  • L. Spina
  • E. Stonkute
  • S. Zaggia

Summary, in English

Context. A renewed interest in the origin of r-process elements has been stimulated by the multi-messenger observation of the gravitational event GW170817, with the detection of both gravitational waves and electromagnetic waves corresponding to the merger of two neutron stars. Such a phenomenon has been proposed as one of the main sources of the r-process. However, the origin of the r-process elements at different metallicities is still under debate. Aims. We aim at investigate the origin of the r-process elements in the Galactic thin-disc population. Methods. From the sixth internal data release of the Gaia-ESO, we have collected a large sample of Milky Way (MW) thin- and thick-disc stars for which abundances of Eu, O, and Mg are available. The sample consists of members of 62 open clusters (OCs), located at a Galactocentric radius between ~5 kpc and ~20 kpc in the disc, in the metallicity range [0.5, 0.4], and covering an age interval from 0.1 to 7 Gy, and about 1300 Milky Way disc field stars in the metallicity range [1.5, 0.5]. We compare the observations with the results of a chemical evolution model, in which we varied the nucleosynthesis sources for the three elements considered. Results. Our main result is that Eu in the thin disc is predominantly produced by sources with short lifetimes, such as magneto-rotationally driven SNe. There is no strong evidence for additional sources at delayed times. Conclusions. Our findings do not imply that there cannot be a contribution from mergers of neutron stars in other environments, as in the halo or in dwarf spheroidal galaxies, but such a contribution is not needed to explain Eu abundances at thin-disc metallicities.

Department/s

  • Astrophysics

Publishing year

2023

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

670

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Galaxy: abundances
  • Galaxy: disk
  • Open clusters and associations: general
  • Stars: abundances

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361