The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Sofia Feltzing. Profile photo.

Sofia Feltzing


Sofia Feltzing. Profile photo.

Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352


  • Sofia Feltzing
  • F. Primas
  • R.A. Johnson

Summary, in English

Context. Metal-rich globular clusters provide important tracers of the formation of our Galaxy. Moreover, and not less important, they are very important calibrators for the derivation of properties of extra-galactic metal-rich stellar populations. Nonetheless, only a few of the metal-rich globular clusters in the Milky Way have been studied using high-resolution stellar spectra to derive elemental abundances. Additionally, Rosenberg et al. identified a small group of metal-rich globular clusters that appeared to be about 2 billion years younger than the bulk of the Milky Way globular clusters. However, it is unclear if like is compared with like in this dataset as we do not know the enhancement of alpha-elements in the clusters and the amount of alpha-elements is well known to influence the derivation of ages for globular clusters. Aims. We derive elemental abundances for the metal-rich globular cluster NGC 6352 and we present our methods to be used in up-coming studies of other metal-rich globular clusters. Methods. We present a study of elemental abundances for a-and iron-peak elements for nine HB stars in the metal-rich globular cluster NGC 6352. The elemental abundances are based on high-resolution, high signal-to-noise spectra obtained with the UVES spectrograph on VLT. The elemental abundances have been derived using standard LTE calculations and stellar parameters have been derived from the spectra themselves by requiring ionizational as well as excitational equilibrium. Results. We find that NGC 6352 has [Fe/H] = -0.55, is enhanced in the alpha-elements to about +0.2 dex for Ca, Si, and Ti relative to Fe. For the iron-peak elements we find solar values. Based on the spectroscopically derived stellar parameters we find that an E(B - V) = 0.24 and (m - M) similar or equal to 14.05 better fits the data than the nominal values. An investigation of log g f-values for suitable Fe I lines lead us to the conclusion that the commonly used correction to the May et al. (1974) data should not be employed.


  • Lund Observatory

Publishing year







Astronomy & Astrophysics





Document type

Journal article review


EDP Sciences


  • Astronomy, Astrophysics and Cosmology


  • stars:
  • galaxy: globular clusters: individual: NGC6352
  • horizontal-branch
  • stars: abundances



Research group

  • Observational and Theoretical Astrophysics


  • ISSN: 0004-6361