The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Sofia Feltzing. Profile photo.

Sofia Feltzing

Professor

Sofia Feltzing. Profile photo.

An abundance study of red-giant-branch stars in the Hercules dwarf spheroidal galaxy

Author

  • Daniel Adén
  • K. Eriksson
  • Sofia Feltzing
  • E. K. Grebel
  • A. Koch
  • M. I. Wilkinson

Summary, in English

Context. Dwarf spheroidal galaxies are some of the most metal-poor, and least luminous objects known. Detailed elemental abundance analysis of stars in these faint objects is key to our understanding of star formation and chemical enrichment in the early universe, and may provide useful information on how larger galaxies form. Aims. Our aim is to provide a determination of [Fe/H] and [Ca/H] for confirmed red-giant branch member stars of the Hercules dwarf spheroidal galaxy. Based on this we explore the ages of the prevailing stellar populations in Hercules, and the enrichment history from supernovae. Additionally, we aim to provide a new simple metallicity calibration for Stromgren photometry for metal-poor, red giant branch stars. Methods. High-resolution, multi-fibre spectroscopy and Stromgren photometry are combined to provide as much information on the stars as possible. From this we derive abundances by solving the radiative transfer equations through marcs model atmospheres. Results. We find that the red-giant branch stars of the Hercules dSph galaxy are more metal-poor than estimated in our previous study that was based on photometry alone. From this, we derive a new metallicity calibration for the Stromgren photometry. Additionally, we find an abundance trend such that [Ca/Fe] is higher for more metal-poor stars, and lower for more metal-rich stars, with a spread of about 0.8 dex. The [Ca/Fe] trend suggests an early rapid chemical enrichment through supernovae of type II, followed by a phase of slow star formation dominated by enrichment through supernovae of type Ia. A comparison with isochrones indicates that the red giants in Hercules are older than 10 Gyr.

Department/s

  • Lund Observatory

Publishing year

2011

Language

English

Publication/Series

Astronomy & Astrophysics

Volume

525

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • stars: abundances
  • galaxies: individual: Hercules
  • galaxies: dwarf
  • galaxies: evolution

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361