Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nils Ryde. Photo.

Nils Ryde


Nils Ryde. Photo.

Abundances of disk and bulge giants from high-resolution optical spectra : IV. Zr, La, Ce, Eu


  • R. Forsberg
  • H. Jönsson
  • N. Ryde
  • F. Matteucci

Summary, in English

Context. Observations of the Galactic bulge suggest that the disk formed through secular evolution rather than gas dissipation and/or mergers, as previously believed. This would imply very similar chemistry in the disk and bulge. Some elements, such as the α-elements, are well studied in the bulge, but others like the neutron-capture elements are much less well explored. Stellar mass and metallicity are factors that affect the neutron-capture process. Due to this, the enrichment of the ISM and the abundance of neutron-capture elements vary with time, making them suitable probes for Galactic chemical evolution.

Aims. In this work, we make a differential comparison of neutron-capture element abundances determined in the local disk(s) and the bulge, focusing on minimising possible systematic effects in the analysis, with the aim of finding possible differences/similarities between the populations.

Methods. Abundances are determined for Zr, La, Ce, and Eu in 45 bulge giants and 291 local disk giants, from high-resolution optical spectra. The abundances are determined by fitting synthetic spectra using the SME-code. The disk sample is separated into thin- and thick-disk components using a combination of abundances and kinematics.

Results. We find flat Zr, La, and Ce trends in the bulge, with a ~0.1 dex higher La abundance compared with the disk, possibly indicating a higher s-process contribution for La in the bulge. [Eu/Fe] decreases with increasing [Fe/H], with a plateau at around [Fe/H] ~−0.4, pointing at similar enrichment to α-elements in all populations.

Conclusions. We find that the r-process dominated the neutron-capture production at early times both in the disks and bulge. Further, [La/Eu] ratios for the bulge are systematically higher than for the thick disk, pointing to either a) a different amount of SN II or b) a different contribution of the s-process in the two populations. Considering [(La+Ce)/Zr], the bulge and the thick disk follow each other closely, suggesting a similar ratio of high-to-low-mass asymptotic giant branch stars.


  • Lund Observatory

Publishing year





Astronomy & Astrophysics



Document type

Journal article


EDP Sciences


  • Astronomy, Astrophysics and Cosmology


  • stars: abundances
  • Galaxy: bulge
  • solar neighborhood
  • Galaxy: evolution




  • Abundances of Neutron-Capture Elements in the Galactic Bulge and Disk from High-Resolution Spectra


  • ISSN: 1432-0746