
Nils Ryde
Professor

A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars Method and numerical implementation
Author
Summary, in English
Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims. Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods. The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results. The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.
Department/s
- Lund Observatory - Undergoing reorganization
Publishing year
2015
Language
English
Publication/Series
Astronomy & Astrophysics
Volume
580
Document type
Journal article
Publisher
EDP Sciences
Topic
- Astronomy, Astrophysics and Cosmology
Keywords
- radiative transfer
- stars: atmospheres
- methods: numerical
Status
Published
Project
- VR-projektbidrag: Infraröd spektroskopi - ett nytt fönster mot galaktisk astronomi
- Carl-TryggerStiftelse: Water on Stars
ISBN/ISSN/Other
- ISSN: 0004-6361