The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Paul McMillan

Paul McMillan

Researcher

Photo of Paul McMillan

Mapping the Milky Way disc kinematics

Author

  • D. Katz
  • Lennart Lindegren
  • David Hobbs
  • Paul Mcmillan
  • DANIEL MICHALIK
  • Tomaž Zwitter

Summary, in English

Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σω/ω/≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ∼5 kpc to ∼13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential. © ESO 2018.

Department/s

  • Lund Observatory

Publishing year

2018

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

616

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Galaxy: disk
  • Galaxy: kinematics and dynamics
  • Solar neighborhood
  • Arches
  • Dispersions
  • Galaxies
  • Geometrical optics
  • Giant stars
  • Kinematics
  • Phase space methods
  • Astronomical community
  • Galaxy: disks
  • High-precision position
  • Phase-space coordinates
  • Velocity uncertainty
  • Wealth of information
  • Velocity

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-0746