The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Paul McMillan

Paul McMillan

Researcher

Photo of Paul McMillan

Distances and parallax bias in Gaia DR2

Author

  • Ralph Schönrich
  • Paul McMillan
  • Laurent Eyer

Summary, in English

We derive Bayesian distances for all stars in the radial velocity sample of Gaia DR2, and use the statistical method of Schönrich, Binney & Asplund to validate the distances and test the Gaia parallaxes. In contrast to other methods, which rely on special sources, our method directly tests the distances to all stars in our sample. We find clear evidence for a near-linear trend of distance bias f with distance s, proving a parallax offset δp. On average, we find δp=-0.054 mas (parallaxes in Gaia DR2 need to be increased) when accounting for the parallax uncertainty underestimate in the Gaia set (compared to δp=-0.048 mas on the raw parallax errors), with negligible formal error and a systematic uncertainty of about 0.006 mas. The value is in concordance with results from asteroseismic measurements, but differs from the much lower bias found on quasar samples. We further use our method to compile a comprehensive set of quality cuts in colour, apparent magnitude, and astrometric parameters. Lastly, we find that for this sample δp appears to strongly depend on σp (when including the additional 0.043 mas) with a statistical confidence far in excess of 10σ and a proportionality factor close to 1, though the dependence varies somewhat with σp. Correcting for the σp dependence also resolves otherwise unexplained correlations of the offset with the number of observation periods nvis and ecliptic latitude. Every study using Gaia DR2 parallaxes/distances should investigate the sensitivity of its results on the parallax biases described here and-for fainter samples-in the DR2 astrometry paper.

Department/s

  • Lund Observatory

Publishing year

2019-08

Language

English

Pages

3568-3580

Publication/Series

Monthly Notices of the Royal Astronomical Society

Volume

487

Issue

3

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • astrometry
  • Galaxy: kinematics and dynamics
  • parallaxes
  • solar neighbourhood
  • stars: distances, kinematics and dynamics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0035-8711