The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oscar Agertz. Profile photo.

Oscar Agertz

Associate Professor / Senior university lecturer / Wallenberg Academy Fellow

Oscar Agertz. Profile photo.

Disc formation and the origin of clumpy galaxies at high redshift

Author

  • Oscar Agertz
  • Romain Teyssier
  • Ben Moore

Summary, in English

Observations of high-redshift galaxies have revealed a multitude of large clumpy rapidly star-forming galaxies. Their formation scenario and their link to present-day spirals are still unknown. In this Letter, we perform adaptive mesh refinement simulations of disc formation in a cosmological context that are unrivalled in terms of mass and spatial resolution. We find that the so-called 'chain-galaxies' and 'clump-clusters' are a natural outcome of early epochs of enhanced gas accretion from cold dense streams as well as tidally and ram-pressured stripped material from minor mergers and satellites. Through interaction with the hot halo gas, this freshly accreted cold gas settles into a large disc-like system, not necessarily aligned to an older stellar component, that undergoes fragmentation and subsequent star formation, forming large clumps in the mass range 10
7-10
9 M
. Galaxy formation is a complex process at this important epoch when most of the central baryons are being acquired through a range of different mechanisms - we highlight that a rapid mass loading epoch is required to fuel the fragmentation taking place in the massive arms in the outskirts of extended discs, an accretion mode that occurs naturally in the hierarchical assembly process at early epochs.

Publishing year

2009-07

Language

English

Publication/Series

Monthly Notices of the Royal Astronomical Society: Letters

Volume

397

Issue

1

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Galaxies: evolution
  • Galaxies: formation
  • Galaxies: haloes

Status

Published

ISBN/ISSN/Other

  • ISSN: 1745-3933