The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oscar Agertz. Profile photo.

Oscar Agertz

Associate Professor / Senior university lecturer / Wallenberg Academy Fellow

Oscar Agertz. Profile photo.

From giant clumps to clouds : IV. Extreme star-forming clumps on top of universal cloud scaling relations in gas-rich galaxies

Author

  • Florent Renaud
  • Oscar Agertz
  • Alessandro B. Romeo

Summary, in English

The clumpy nature of gas-rich galaxies at cosmic noon raises the question of universality of the scaling relations and average properties of the star-forming structures. Using controlled simulations of disk galaxies and varying only the gas fraction, we show that the influence of the galactic environments (large-scale turbulence, tides, and shear) contributes, together with the different regime of instabilities, to setting a diversity of physical conditions for the formation and evolution of gas clumps from low to high gas fractions. However, the distributions of gas clumps at all gas fractions follow similar scaling relations as Larson's, suggesting the universality of median properties. Yet, we find that the scatter around these relations significantly increases with the gas fraction, allowing for the presence of massive, large, and highly turbulent clouds in gas-rich disks in addition to a more classical population of clouds. Clumps with an excess of mass for their size are slightly denser, more centrally concentrated, and host more abundant and faster star formation. We find that the star formation activity (rate, efficiency, and depletion time) correlates much more strongly with the excess of mass than with the mass itself. Our results suggest the existence of universal scaling relations for gas clumps but with redshift-dependent scatters, which calls for deeper and more complete census of the populations of star-forming clumps and young stellar clusters at cosmic noon and beyond.

Department/s

  • Astrophysics
  • eSSENCE: The e-Science Collaboration

Publishing year

2024-07

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

687

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Galaxies: general
  • Galaxies: ISM
  • Methods: numerical

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361