The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Lennart Lindegren. Profile picture.

Lennart Lindegren

Professor

Lennart Lindegren. Profile picture.

ASTROMETRIC EXOPLANET DETECTION WITH GAIA

Author

  • Michael Perryman
  • Joel Hartman
  • Gaspar A. Bakos
  • Lennart Lindegren

Summary, in English

We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (+/- 6000) high-mass (similar to 1-15M(J)) long-period planets should be discovered out to distances of similar to 500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (+/- 20,000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them similar to 25-50 intermediate-period (P similar to 2-3 yr) transiting systems.

Department/s

  • Lund Observatory - Undergoing reorganization

Publishing year

2014

Language

English

Publication/Series

Astrophysical Journal

Volume

797

Issue

1

Document type

Journal article

Publisher

American Astronomical Society

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • astrometry
  • planets and satellites: general
  • space vehicles: instruments

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-637X