The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Lego Figure holding a lego telescope. Photo

Henrik Hartman

Researcher (Leave of Absence)

Lego Figure holding a lego telescope. Photo

Stellar population astrophysics (SPA) with the TNG : Identification of a sulphur line at λair = 1063.6 nm in GIANO-B stellar spectra


  • N. Ryde
  • Henrik Hartman
  • E. Oliva
  • L. Origlia
  • N. Sanna
  • M. Rainer
  • B. Thorsbro
  • E. Dalessandro
  • G. Bono

Summary, in English

Context. In the advent of new infrared high-resolution spectrometers, accurate and precise atomic data in the infrared are urgently needed. Identifications, wavelengths, strengths, broadening, and hyper-fine splitting parameters of stellar lines in the near-infrared are in many cases not accurate enough to model observed spectra, and in other cases, these parameters do not even exist. Some stellar features are unidentified. Aims. The aim with this work is to identify a spectral feature at λvac = 1063.891 nm or λair = 1063.600 nm that is visible in spectra of stars of different spectral types that are observed with the GIANO-B spectrometer. Methods. The search for spectral lines to match the unidentified feature in line lists from standard atomic databases was not successful. However, by investigating the original published laboratory data, we were able to identify the feature and solve the problem. To confirm its identification, we modelled the presumed stellar line in the solar intensity spectrum and found an excellent match. Results. We find that the observed spectral feature is a stellar line originating from the 4s′-4p′ transition in S I, and that the reason for its absence in atomic line databases is a neglected air-to-vacuum correction in the original laboratory measurements from 1967 for this line only. From interpolation we determine the laboratory wavelength of the S I line to be λvac = 1063.8908 nm or λair = 1063.5993 nm, and the excitation energy of the upper level to be 9.74978 eV.


  • Lund Observatory - Has been reorganised

Publishing year





Astronomy and Astrophysics



Document type

Journal article


EDP Sciences


  • Astronomy, Astrophysics and Cosmology


  • Atomic data
  • Infrared: Stars
  • Instrumentation: Spectrographs
  • Line: Identification
  • Methods: Laboratory: Atomic
  • Techniques: Spectroscopic




  • ISSN: 0004-6361