The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dainis Dravins. Profile photo.

Dainis Dravins

Professor emeritus

Dainis Dravins. Profile photo.

Magnetic deformation of the white dwarf surface structure

Author

  • Ch Fendt
  • D. Dravins

Summary, in English

The influence of strong, large-scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non-magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we find for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2-10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force-free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two-dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.

Department/s

  • Lund Observatory

Publishing year

2000

Language

English

Pages

193-206

Publication/Series

Astronomical Notes - Astronomische Nachrichten

Volume

321

Issue

3

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Keywords

  • Fundamental parameters
  • Magnetic fields
  • Stars: Atmospheres
  • White dwarfs

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6337