The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Johansen. Profile picture.

Anders Johansen

Professor

Anders Johansen. Profile picture.

Anatomy of rocky planets formed by rapid pebble accretion : I. How icy pebbles determine the core fraction and FeO contents

Author

  • Anders Johansen
  • Thomas Ronnet
  • Martin Schiller
  • Zhengbin Deng
  • Martin Bizzarro

Summary, in English

We present a series of papers dedicated to modelling the accretion and differentiation of rocky planets that form by pebble accretion within the lifetime of the protoplanetary disc. In this first paper, we focus on how the accreted ice determines the distribution of iron between the mantle (oxidized FeO and FeO1.5) and the core (metallic Fe and FeS). We find that an initial primitive composition of ice-rich material leads, upon heating by the decay of 26Al, to extensive water flow and the formation of clay minerals inside planetesimals. Metallic iron dissolves in liquid water and precipitates as oxidized magnetite Fe3O4. Further heating by 26Al destabilizes the clay at a temperature of around 900 K. The released supercritical water ejects the entire water content from the planetesimal. Upon reaching the silicate melting temperature of 1700 K, planetesimals further differentiate into a core (made mainly of iron sulfide FeS) and a mantle with a high fraction of oxidized iron. We propose that the asteroid Vesta's significant FeO fraction in the mantle is a testimony of its original ice content. We consider Vesta to be a surviving member of the population of protoplanets from which Mars, Earth, and Venus grew by pebble accretion. We show that the increase in the core mass fraction and decrease in FeO contents with increasing planetary mass (in the sequence Vesta - Mars - Earth) is naturally explained by the growth of terrestrial planets outside of the water ice line through accretion of pebbles containing iron that was dominantly in metallic form with an intrinsically low oxidation degree.

Department/s

  • Astrophysics
  • Lund Observatory - Has been reorganised

Publishing year

2023-03-01

Language

English

Publication/Series

Astronomy and Astrophysics

Volume

671

Document type

Journal article

Publisher

EDP Sciences

Topic

  • Astronomy, Astrophysics and Cosmology

Keywords

  • Earth
  • Meteorites, meteors, meteoroids
  • Planets and satellites: atmospheres
  • Planets and satellites: composition
  • Planets and satellites: formation
  • Planets and satellites: terrestrial planets

Status

Published

ISBN/ISSN/Other

  • ISSN: 0004-6361