The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Johansen. Profile picture.

Anders Johansen

Professor

Anders Johansen. Profile picture.

A pebble accretion model for the formation of the terrestrial planets in the solar system

Author

  • Anders Johansen
  • Thomas Ronnet
  • Martin Bizzarro
  • Martin Schiller
  • Michiel Lambrechts
  • Ake Nordlund
  • Helmut Lammer

Summary, in English

Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites - formed by melting of dust aggregate pebbles or in impacts between planetesimals - have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.

Department/s

  • Lund Observatory - Undergoing reorganization
  • eSSENCE: The e-Science Collaboration

Publishing year

2021

Language

English

Publication/Series

Science Advances

Volume

7

Issue

8

Document type

Journal article

Publisher

American Association for the Advancement of Science (AAAS)

Topic

  • Astronomy, Astrophysics and Cosmology

Status

Published

ISBN/ISSN/Other

  • ISSN: 2375-2548