
Anders Johansen
Professor

Towards an initial mass function for giant planets
Author
Summary, in English
The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn-type planets. While the present-day distribution appears to be bimodal, with peaks around ~1MJ and ~20M?, this bimodality does not seem to be primordial. Instead, planets around ~60M⊕ appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn-type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.
Department/s
- Lund Observatory - Undergoing reorganization
Publishing year
2018-07-21
Language
English
Pages
961-970
Publication/Series
Monthly Notices of the Royal Astronomical Society
Volume
478
Issue
1
Document type
Journal article
Publisher
Oxford University Press
Topic
- Astronomy, Astrophysics and Cosmology
Keywords
- Planets and satellites: dynamical evolution and stability
- Planets and satellites: formation
- Planets and satellites: gaseous planets
Status
Published
ISBN/ISSN/Other
- ISSN: 0035-8711