The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Johansen. Profile picture.

Anders Johansen


Anders Johansen. Profile picture.

Towards an initial mass function for giant planets


  • Daniel Carrera
  • Melvyn B. Davies
  • Anders Johansen

Summary, in English

The distribution of exoplanet masses is not primordial. After the initial stage of planet formation, gravitational interactions between planets can lead to the physical collision of two planets, or the ejection of one or more planets from the system. When this occurs, the remaining planets are typically left in more eccentric orbits. In this report we demonstrate how the present-day eccentricities of the observed exoplanet population can be used to reconstruct the initial mass function of exoplanets before the onset of dynamical instability. We developed a Bayesian framework that combines data from N-body simulations with present-day observations to compute a probability distribution for the mass of the planets that were ejected or collided in the past. Integrating across the exoplanet population, one can estimate the initial mass function of exoplanets. We find that the ejected planets are primarily sub-Saturn-type planets. While the present-day distribution appears to be bimodal, with peaks around ~1MJ and ~20M?, this bimodality does not seem to be primordial. Instead, planets around ~60M appear to be preferentially removed by dynamical instabilities. Attempts to reproduce exoplanet populations using population synthesis codes should be mindful of the fact that the present population may have been depleted of sub-Saturn-mass planets. Future observations may reveal that young giant planets have a more continuous size distribution with lower eccentricities and more sub-Saturn-type planets. Lastly, there is a need for additional data and for more research on how the system architecture and multiplicity might alter our results.


  • Lund Observatory - Has been reorganised

Publishing year







Monthly Notices of the Royal Astronomical Society





Document type

Journal article


Oxford University Press


  • Astronomy, Astrophysics and Cosmology


  • Planets and satellites: dynamical evolution and stability
  • Planets and satellites: formation
  • Planets and satellites: gaseous planets




  • ISSN: 0035-8711