
Anders Johansen
Professor

Forming Chondrules in Impact Splashes. I. radiative Cooling Model
Author
Summary, in English
The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of Al-26 would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t(cool) and then drops with time t approximately as T similar or equal to T-0[(315)t/t(cool)+ 2/5](-5/3) for t > t(cool). The time at which this temperature drop starts t(cool) depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.
Department/s
- Lund Observatory - Undergoing reorganization
Publishing year
2014
Language
English
Publication/Series
Astrophysical Journal
Volume
794
Issue
1
Document type
Journal article
Publisher
American Astronomical Society
Topic
- Astronomy, Astrophysics and Cosmology
Keywords
- meteorites
- radiative transfer
- meteors
- meteoroids
Status
Published
ISBN/ISSN/Other
- ISSN: 0004-637X