

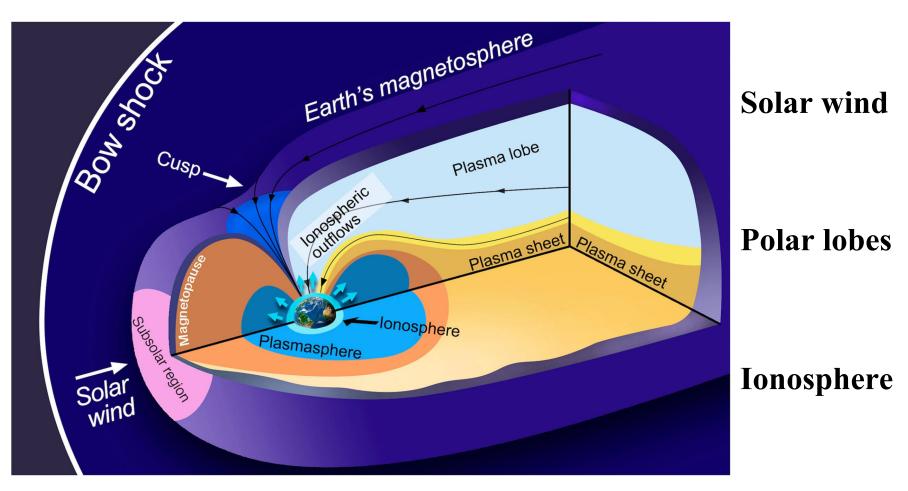
Cluster (ESA, launch 2000)

The escape of the upper atmosphere and a surprising way to detect this

Mats André Swedish Institute of Space Physis mats.andre@irfu.se

Atmospheric Escape

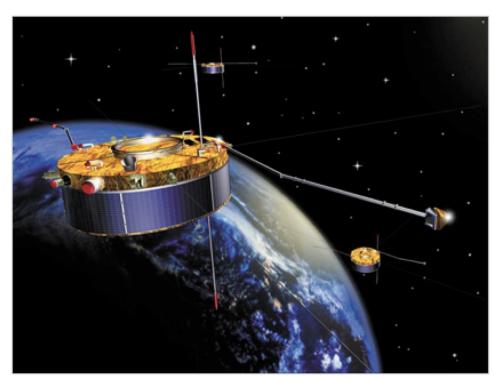
- High energy tail of the velocity distribution, at the exobase (Jeans escape).
- Charge exchange with ions from the magnetosphere.


H, He, O and more

 10^{26} /s 1 kg/s 30,000 ton/year

Present outflow small on geological timescale. Similar to inflow of small (< mg) particles.

The Magnetosphere


(Fig. from Toledo-Redondo et al., Rev. Geophys. 2021)

fome Animals Ancient Energy Environment Travel/Cultures Space/Tech Water Weird News Photos News Video

Giant Veil of "Cold Plasma" Discovered High Above Earth

Clouds of charged particles stretch a quarter the way to the moon, experts say.

An artist's rendering of ESA's Cluster II spacecraft in orbit.

Illustration courtesy J. Huart, ESA

Share

Comments (0)

√ Like 1.3k

У Tweet √187

Dave Mosher for National Geographic News Published January 26, 2012

Clouds of "cold plasma" reach from the top of Earth's atmosphere to at least a quarter the distance to the moon, according to new data from a cluster of European satellites.

Most Popular

The and gendermodern-

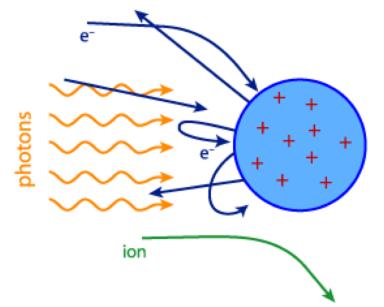
analyses reveal.

An odd compac theory-

theorynew class of planet,

32,000to Life The oldregener

recordholder by som says.


ADVERTISEMENT

Problem: Spacecraft Charging

Conducting SC in sunlit plasma

- Solar EUV => Escaping photo e
- Incoming plasma e⁻ (i⁺ much slower)
- Result 1: (often) positive SC (tens of V)
- Result 2: Low energy i⁺ (few eV) cannot reach the SC

(From EFW for Dummies, web-page, C. Cully. 2002)

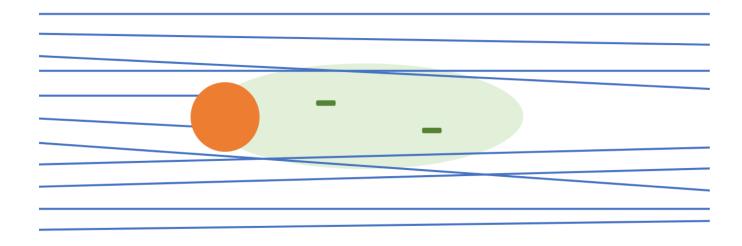
Solution: Wake Physics

Collisional fluid or gas

"The wake is the region of disturbed flow downstream of a solid body moving through a fluid" (adapted from Wikipedia)

Subsonic or supersonic (V_{sound} vs. V_{drift})

Collisionless plasma

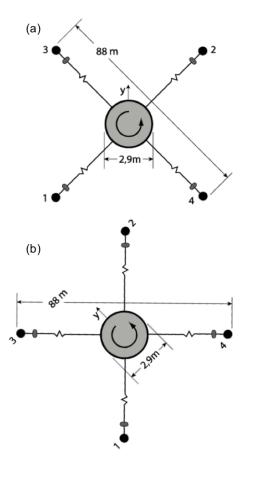

Often V_i , thermal $< V_{drift}$; $V_{e, thermal} > V_{drift}$

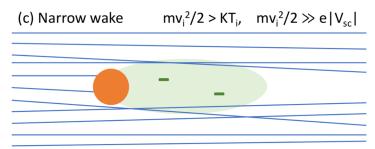
Ions supersonic; electrons subsonic: Mesosonic

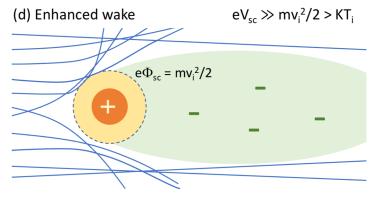
 $(V_{ion \ acoustic} \approx V_{i, \ thermal} \ for \ T_e \approx T_i)$

Wake Electric Field

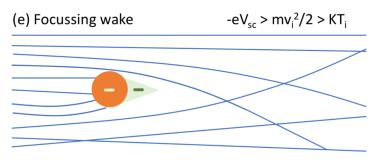
Plasma
$$V_{drift} =>$$


$$V_{i}$$
, thermal $<$ V_{drift} ; $V_{e, thermal}$ $>$ V_{drift}

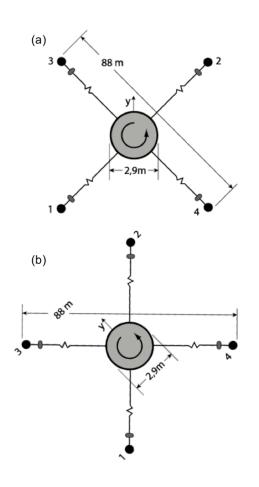

Wake filled with electrons: Electric field

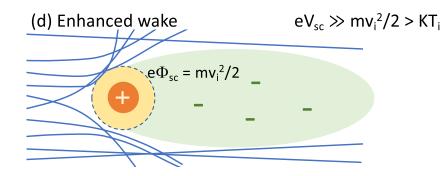

Wakes Behind Spacecraft

Cluster

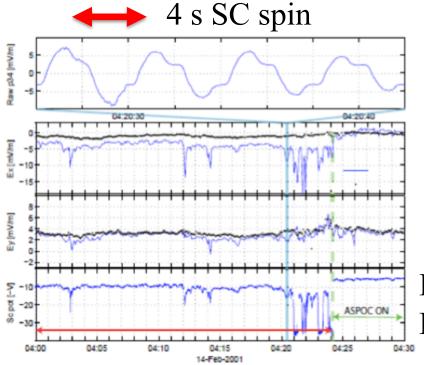


Narrow (Solar wind)


Enhanced (Polar lobes)

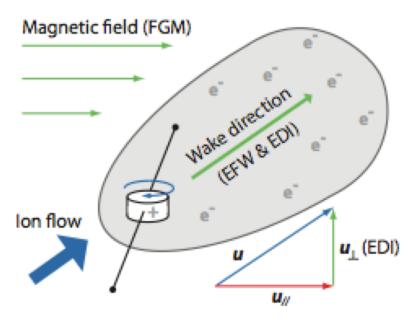


Focused (Ionosphere)



Enhanced Wake

Enhanced (Polar lobes)


5 mV/m

E NOT geophysical Low energy ions NOT Ok

Flowing Low-Energy Ions

Cluster

 $KT < mv^2/2 < eV_{sc}$

Velocity

Wake direction (EFW, EDI)

B direction (FGM)

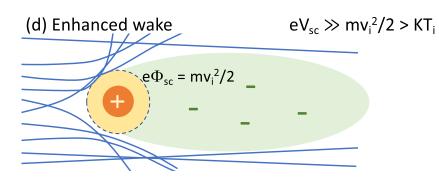
 $\mathbf{u}_{\text{perp}} = \mathbf{E} \times \mathbf{B}/\mathrm{B}^2 \text{ (EDI, FGM)}$

Density

SC potential:

Lybekk et al. (2012)

Haaland et al. (2017)


Flux

Engwall et al. (2009)

André et al. (2015)

Enhanced Wake

Enhanced (Polar lobes)

E (local) not directly useful Cold ions will not reach the SC

E (local, EFW) and E (geophysical, EDI)
B (geophysical, FGM)
SC potential (EFW), proxy for density
=> Ion flux

Validation of the Cluster Wake Method

- Statistics: 10 years, 1.68 × 10⁶ for detection; 3.2 × 10⁵ for flux. (Data point: 4 s Cluster spin.) (André et al., JGR, 2015)
- Compare nearby Cluster SC (ASPOC on/off) (particle detector or wake method) (Engwall et al., GRL, 2006)
- Simulations (e.g. Engwall et al., Phys. Plasmas, 2006)
- Solar wind wake results (André et al., JGR, 2021)
- Compare with results at lower altitude (André et al., 2021, Toledo-Redondo, 2021)

Ion Outflow: Cold Ions Common

High latitude: Cusp/cleft, Polar Cap, Auroral Region			
Spacecraft	Nominal energy range (eV)	Altitude (R_E)	Upflow rate (10^{26} ions/s); ion species
Cluster ¹	0 - 60	5 - 20	0.6 - 2.4 (mainly H ⁺)
Polar/TIDE ²	<1 - 100	8	1.3 (mainly H ⁺)
Polar/TIDE ³	<1 - 450	0.8	1.7 (mainly H ⁺)
Akebono ⁴	<1 - 70	1 - 1.5	$0.2 - 2(H^{+} \text{ and } O^{+})$
DE^5	10 - 17,000	2.5-3.7	$0.2 - 2 (H^+ \text{ and } O^+)$
Polar/TIMAS ⁶	15 - 33,000	0.8	$0.08 (H^{+} \text{ and } O^{+})$
Cluster/CODIF ⁷	25 - 38,000	10 - 15	0.1 - 2.2 (O ⁺)
Low latitude: Magnetopause (plumes)			
Spacecraft	Nominal energy range (eV)		Outflow rate (10 ²⁶ ions/s)
Cluster ⁸	0 - 1000		1 - 10
MPA^9	1 - 40,000		2
IMAGE ¹⁰	wide range		3.8 - 21
Low latitude: Magnetopause (wind)			
Spacecraft	Nominal energy range (eV)		Outflow rate (10^{26} ions/s)
Cluster ⁸	0 - 1000		0.1 - 1

¹André et al. [2015], ²Su et al. [1998], ³Huddleston et al. [2005], ⁴Cully et al. [2003],

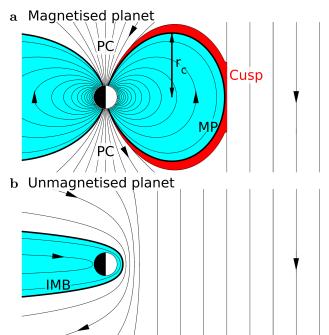
Typical: 10²⁶ ions/s André et al., AGU monograph, 2021

Update: Toledo-Redondo et al., Rev Geophys, 2021

⁵Yau and André [1997], ⁶Peterson et al. [2006, 2008], ⁷Slapak et al. [2017], ⁸André and Cully [2012],

⁹Magnetospheric Plasma Analyzers *Borovsky and Denton* [2008], ¹⁰ Spasojevic and Sandel [2010],

Impact: Space Weather


Plasma content near-Earth space

Schrijver et al., 2015

Owens et al., 2021

Beedle et al., 2022

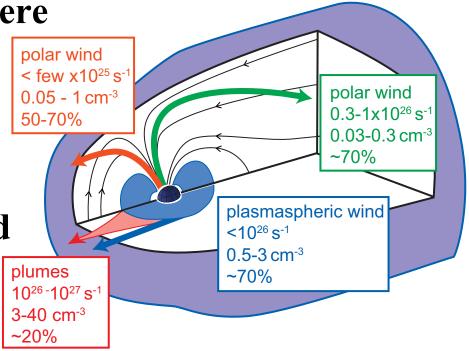
Impact: Astrobiology

An intrinsic B-field does NOT protect the atmosphere

Gronoff et al., 2020

Ramstad and Barabash, 2021

Gunell et al., 2018



Impact: Space Physics

Cold (few eV) ions dominate

- Most of the magnetosphere
- Most of the time
- Much of the outflow

- Change the Alfvén speed
- Change magnetic reconnection

André and Cully, GRL, 2012

Toledo-Redondo et al., Rev Geophys, 2021

André et al., JGR, 2021

Delzano et al., JASTP, 2021