Dynamics in atmospheres and outflows of evolved stars

Elvire De Beck
Wouter Vlemmings, Theo Khouri, Matthias Maercker, Hans Olofsson
Department of Space, Earth and Environment, Chalmers University of Technology
Onsala Space Observatory
Quick intro

- Evolved stars in this talk
 = Post-Main-Sequence Giants
- $< 8 \, M_{\text{sun}}$
 AGB: asymptotic giant branch stars
- $>8 \, M_{\text{sun}}$
 RSG: red supergiant stars
- Cool surface $\sim 3000K$
- Luminous $\sim 100 - 100,000 \, L_{\text{sun}}$
- Mass loss $\sim 10^{-8} - 10^{-3} \, M_{\text{sun}}/\text{yr}$
Evolution and appearance on AGB strongly affected by range of dynamical processes

- large-scale convective flows
 >> transport of newly formed chemical elements to the surface
- stellar pulsations
 >> trigger shock waves in extended stellar atmosphere
- dust grain formation in upper atmosphere
 >> acceleration through scattering/absorption and collisions with gas
- massive outflows of gas and dust

These lead to
- enrichment of ISM
- evolution from giant to white dwarf
Dynamics of AGB stars

Observations of asymmetries and inhomogeneities
- short-lived & small-scale: photosphere and dust-forming layers
- long-lived & large-scale: circumstellar envelope

High-angular resolution observations give information on e.g. dust condensation
- location
- chemical composition
- size

“These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models.”
Observations: large scales

Large scales = circumstellar envelope (CSE)
>> spherical
 • entire outflow
 • shells

Castro Carrizo et al. (2010)
CO (J=2-1), PdBI
IK Tau, normal mass loss

Olofsson et al. (2000)
CO (J=1-0), PdBI
TT Cyg, detached shell
Observations: large scales

Large scales = circumstellar envelope (CSE)
>> spherical
 • entire outflow
 • shells

De Beck & Olofsson (2018)
APEX spectral survey at 0.8-1.9 mm
R Dor, normal mass loss
 • main, smooth, spherical component
 • up to 4 extra components in the outflow
 • one at velocities >> wind expansion velocity
 • shells / rings / spiral / ... ?
Observations: large scales

Large scales = circumstellar envelope (CSE)

>> spherical
 • entire outflow
 • shells

>> not so spherical
 • binary interaction

Maercker et al. (2012, 2014, 2016)
R Scl, detached shell source
CO($J=3-2$), ALMA
Dust-scattered stellar light, PolCor

- previously unknown binary companion
 ~60 AU separation

- from spiral windings:
 information on changes in velocity and mass loss
 on evolutionary timescales

- Dust and gas dynamics comparable?
Observations: large scales

Large scales = circumstellar envelope (CSE)

>> spherical
 • entire outflow
 • shells

>> not so spherical
 • binary interaction

Maercker et al. (2012, 2014, 2016)
R ScI, detached shell source
CO($J=3-2$), ALMA
Dust-scattered stellar light, PolCor

- previously unknown binary companion
 ~60 AU separation

- from spiral windings:
 information on changes in velocity and mass loss
 on evolutionary timescales

- Dust and gas dynamics comparable?
Observations: large scales

Large scales = circumstellar envelope (CSE)

>>> spherical
 • entire outflow
 • shells

>>> not so spherical
 • binary interaction
 • disk

Ramstedt et al. (2014)
Mira, 0.5" (~45 AU) binary separation
CO(J=3-2), ALMA, “bubble” in the AGB wind

Kervella et al. (2014, 2015, 2016)
L2 Pup
ALMA, VLT (NACO/SPHERE), edge-on disk
Observations: small scales

- Small scales
 - upper atmospheric layers (warm molecular layer)
 i.e. before wind acceleration

Khouri et al. (2016)
CO(\(\nu=1, J=3-2\)), ALMA

- inverse P-Cygni profiles indicate infall motion

- multiple epochs reflect changes of the upper atmosphere
 - temperature
 - density
 - motion
Observations: small scales

- Small scales
 - upper atmospheric layers
 i.e. before wind acceleration
 - dust formation region

Khoury et al. (2016), SPHERE/ZIMPOL, R Dor

- **Top**
 variable morphology in continuum
 = changing opacity of TiO in extended atmosphere

- **Bottom**
 polarised light from ~annular region around central star.
 - density profile steeper than constant- \(\nu \) wind
 - upper limit for the \(d/g \sim 2 \times 10^{-4} \) at \(5.0 \) R\(\star \),
 consistent with minimum required by wind-driving models
Observations: small scales

- Small scales
 - upper atmospheric layers i.e. before wind acceleration
 - dust formation region
 - surface imaging

π^1 Gruis, VLTI/PIONIER
surface granulation due to convection

Vlemmings et al. (2017, *Nature Astro.*),
W Hya, ALMA
heating of the upper atmosphere due to shocks chromosphere?
Conclusions

Mass loss dominates appearance and evolution on AGB
>> critical to have predictive description as input for models of
 - stellar evolution
 - galactic chemical evolution
>> strongly dependent on variety of dynamical processes

Observations show
 - asymmetries and inhomogeneities
 - on large spatial scales & long timescales
 - on small spatial scales & short timescales
 - dust location, size, composition
 - surface structure for stars other than our Sun (!)

constraining
 - convection and pulsation motions
 - dust growth
 - wind acceleration
 - mass-loss rates

and heading for a deeper understanding of the dynamics of evolved stars.
Theoretical models

Freytag et al. (2017)
star-in-a-box models

surface granulation due to convection